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Abstract The forward Chapman-Kolmogorov differential equation is used to model the
time evolution of the Probability Density Function of fluctuations. This equation may be
restricted to either Master, Fokker-Planck or Liouville equations. A derivation of the Liou-
ville equation with possible singular boundary conditions has already been presented in a
previous publication (Valiño and Hierro in Phys. Rev. E 67:046310, 2003). In this paper,
that derivation is extended to the full Chapman-Kolmogorov differential equation.
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1 Introduction

The derivation of the Chapman-Kolmogorov differential equation as a model to represent
the evolution of a Probability Density Function (PDF) may be found in [9]. In Fluid Dy-
namics, for instance, PDF methods are extensively used to model turbulent fluctuations [3,
4, 19]. Fokker-Planck equations, statistically equivalent to the original Navier-Stokes equa-
tions, are derived by different means: either from the closed, multipoint Hopf functional,
or from the definition of the PDF as the expected value of a Dirac’s delta, or from a weak
formulation where the PDF is considered as a functional acting on a space of test func-
tions. Recently [16], there has been presented a derivation of the Fokker-Planck equations,
with boundary conditions included, from the full Chapman-Kolmogorov differential equa-
tions [9] oriented towards problems with fast surface transport. That methodology [16]
closely resembles, in the initial steps, the one followed in this paper, although significant
overall differences are apparent.

In a typical derivation, there are some surface integrals which could lead to singularities
at the boundaries of the phase space domain which are neglected based either on “a priori”
assumptions on the properties of the test functions, or on “a posteriori” boundary conditions
imposed on the problem from physical considerations. However, there are some situations
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where the presence of a singularity or a discontinuity at the boundary of the probabilistic
space can have a physical meaning. Kuznetsov and Sabelnikov [15] proved that, in the PDF
of scalar concentration fields with external intermittence, the contribution of the laminar
zones creates a singularity at the boundary of the probability space. This problem was also
studied by Klimenko and Bilger [13]. Not only that, one can also think of situations where
the global probability is not preserved; for instance, a compressible flow inside a fixed vol-
ume connected to an external reservoir of fluid. In that example, there is an additional term
in the Fokker-Planck equation which is linear in the PDF itself and may be modelled by
a global renormalization of the weight of Monte Carlo particles after each time step [21].
Lubashevsky et al. [16] analysed a situation where there may be present a discontinuity on
the transport properties at the boundary, a fast diffusion layer, and computed the value of the
corresponding additional surface terms from physical models for the stochastic behaviour
close to the boundary.

In a previous publication [21], Liouville equations with possible singular boundary con-
ditions were analysed. In this paper, the full Chapman-Kolmogorov differential equation
with possible singular boundary conditions is studied following Gardiner’s weak deriva-
tion [9]. All the surface terms are retained and analysed in this paper, in the most general
formulation of those found in the literature. The only restriction posed on test functions is
for them to be twice continuously differentiable, class C2, and integrable with a measure
given by the probability whose evolution is computed. The inclusion of a diffusion term
means that the drift term stops being a proper first-order tensor, as it happens in the Liou-
ville equation, and some care must be taken to rearrange different non-tensorial quantities
so that proper tensors may be handled as required by a systematic application of Reynolds’
transport and divergence theorems.

2 Definition of the PDF

Work is done in a stochastic phase space made of an M dimensional open region G ∈ R
M ,

an M manifold, plus a piecewise smooth boundary S, an M − 1 manifold. G1 = R
M\G

will be considered as an external reservoir if there is some inflow or outflow of probability
from G. There are possible singular contributions to the PDF on the surface S. The normal
to S, pointing from G to G1, will be referred to as n. Were there inner singularities, it
would always be possible to split the inner domain so that the singularities were located at
the new boundaries and compute explicitly the exchanges of probability between the new
domains. It will also be assumed that the PDF may be normalized to a global weight unity;
this means that singularities at the boundary may be simple layers [22], but multilayers are
excluded. Inside G, the PDF is of class C2. Einstein’s summation convention on repeated
(mute) indices is followed except when placed within parentheses.

The full (inner plus boundary) PDF may be written as

P (z; t) = P +(z; t) + γS(z, t)δS (1)

where P + stands for the inner contribution, δS is the simple layer functional defined on S

and γS is a local weight associated to each boundary point, t is time, z is used to represent
the different components of the phase space. The lack of a singular contribution in some
or all the points of the boundary may be represented by a zero value of γS at them. The
semicolon symbol between z and t is used to denote that z correspond to variables of the
stochastic phase space whereas t does not. Normalization means, by using the properties of
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a simple layer functional [22], that

∫
G

P +(z; t) dMz +
∮

S

γS(z, t) dS = 1 (2)

where dMz is a short-hand notation for the differential form dz1 ∧ dz2 ∧ · · · ∧ dzM ,
dS is a surface element of the boundary surface with a local surface metrics, aαβ , de-
fined by the restriction of the global metrics, gij , used in R

M to the M − 1 manifold S,
dS = √|detaαβ |dζ 1 ∧ dζ 2 ∧ · · · ∧ dζM−1 = a1/2dM−1ζ , with ζ representing the M − 1 co-
ordinates of the M −1 manifold S, Greek indices are used to represent coordinates restricted
to S. A volume element in either G or G1 is dV = √|detgij |dz1 ∧ dz2 ∧ · · · ∧ dzM =
g1/2dMz. Usually, the stochastic phase space is Euclidean with a Cartesian basis, namely
g1/2 = √|detgij | = 1 and dV = dzM ; however, the use of generalised coordinates will be
preserved during the derivation. It should be noticed that P + do not transform as a scalar
field under a coordinate change [20]. By definition, P +dMz = P ′+dMz′ under a change of
coordinates from z to z′; therefore, P ′+ = P +J , where J is the Jacobian of z as a function
of z′. It is also a well-known fact [1] that g′1/2 = g1/2J . It is immediate to check that the
volume weight P + = P +g−1/2 is a scalar field and that, with an Euclidean metrics, scalar
weights coincide with PDF’s. On the other hand, γS is not a surface PDF, but the scalar
weight of a simple layer functional; PS = γS

√|detaαβ | = γSa
1/2 is the surface PDF related

to the γS scalar weight. Equation (2) can be rewritten as

∫
G

P +(z; t) dV +
∮

S

γS(z, t) dS =
∫

G

P +(z; t) dMz +
∮

S

PS(z, t) dM−1ζ = 1 (3)

with a consistent grouping of volume and surface PDF’s on one side and of volume and
surface scalar weights on the other one.

3 Evolution of the PDF with Singularities at the Boundaries

Equation (3.4.16) of [9] may be used as a starting point for the derivation of the time evolu-
tion of P . Moreover, an integration over y may be carried out with the only consequence that
probabilities at time t conditional on probabilities at time t ′ are transformed into probabili-
ties at time t regardless of their origin. Formulae are shorter after this integration, whereas
derivations are not modified since there are no operators acting on the previous time vari-
ables. Using the naming conventions of this paper and studying probabilities regardless of
their origin, this starting point becomes

d

dt

[∫
f (z)P (z; t) dMz

]

=
∫ [

Ai(z, t)
∂f (z)

∂zi
+ 1

2
Bij (z, t)

∂2f (z)

∂zi∂zj

]
P (z; t) dMz

+
∫

f (z)
{
−
∫ [

W(z|x; t)P (x; t) − W(x|z; t)P (z; t)]dMx
}

dMz (4)

where f (z) represents a generic test function in the phase space which is twice continuously
differentiable, the symbol −

∫
is used to denote a principal value integral where a small neigh-

bourhood |x − z| < ε is excluded. By comparison of (3.4.15) and (3.4.16) of [9], an obvious
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typo has been corrected. In the original reference, partial time derivatives are used instead
of total time derivatives; this difference is only relevant if the phase space reference system
is time-dependent. W(x|z; t), Ai(z, t) and Bij (z, t) stand for [9]

W(x|z; t) = lim
	t→0

P (x; t + 	t |z; t)/	t for |x − z| ≥ ε (5)

Ai(z, t) = lim
	t→0

1

	t

∫
|x−z|<ε

(xi − zi)P (x; t + 	t |z; t)dMx + O(ε) (6)

Bij (z, t) = lim
	t→0

1

	t

∫
|x−z|<ε

(xi − zi)(xj − zj )P (x; t + 	t |z; t)dMx + O(ε) (7)

W is the jump term, it represents a discontinuous evolution at discrete points in the path of
a Monte Carlo particle; Ai is the drift term, it represents a continuous, differentiable path;
and Bij is the diffusion term, it represents a continuous, non-differentiable path. All higher
order terms (higher order in x − z) vanish when ε → 0.

It must be remembered throughout the paper that P +dMz = P +dV and PSd
M−1ζ =

γSdS.

3.1 Inertial Term

The term on the left hand side (4) is referred to, from now on, as inertial by analogy with
similar terms in mechanics and is the first one to be expanded. The existence of moving
boundaries [5], with velocity in phase space żS is not excluded. For instance, in the stochas-
tic analysis of pure diffusion problems, fluctuations tend to zero, shrinking G and moving
S in the process. This means that the difference between partial and total time derivatives
should be taken into account since there is a distinction between a coordinate system which
remains fixed at time t and a coordinate system moving with the same velocity as S at the
boundary.

d

dt

∫
f (z)P (z; t) dMz

1= d

dt

[∫
f (z)P +(z; t) dV +

∮
f (z)γS(z, t) dS

]

2=
∫

f
∂P +

∂t
dV +

∮
f P +żi

Sni dS +
∮ [df γS

dt
+ f γS

1

2a

∂a

∂t
+ f γSζ̇

α
;α

]
dS (8)

where scalar weights have been used in equality 1 because in equality 2 the Reynolds trans-
port theorem for volumes and surfaces [1] is applied and this theorem requires tensorial
integrands. żS represents the velocity field that G is moving with, its divergence is the time
derivative of the natural logarithm of the ratio of the volume element at a given time to its
initial value, dV = JdV0, żi

S;i = d lnJ/dt . żS at S is the propagation velocity of the moving
boundary S. ζ̇ α

;α = żα
S;α is its divergence restricted to the boundary S. It can be computed, as

if there were no component normal to S, in coordinates intrinsic to S, ζ . ȧ = da/dt = ∂a/∂t

has been assumed [1] since intrinsic coordinates ζ are chosen so that S propagates with a
velocity normal to itself when viewed from the outside R

M space.
When writing dV = JdV0 some care must be taken with the definition of coordinates.

In principle, one may work with a fixed coordinate system which covers R
M and whose

metrics is the intrinsic metrics of R
M which is assumed to remain fixed in time; if the
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integration volume is moving, this shows as volume integral with time-dependent limits. On
the other hand, one could also work in a coordinate system moving with the same velocity
as the integration volume, such that the coordinates of a point remain the same as those
of the initial time and the metrics is modified to take into account the possible presence
of dilatation or contraction; the integration limits of a volume integral are now fixed (thus,
time derivatives may come inside the integral), but the metrics linked to a volume element is
modified. It is in this second class of coordinate systems where expressions like dV = JdV0

make sense. Of course, after performing the formal calculations in a moving coordinate
system, the fixed coordinate system may be recovered as it is the standard practice in the
derivation of Reynolds’ transport theorem.

In the last integral of (8), df γS/dt requires some care. A generic f has no explicit de-
pendence on time; however, it depends on both the surface coordinates and the coordinate
normal to S, since it is a volume scalar; on the other hand, γS and a show an explicit de-
pendence on time but, in the phase space, they only depend on surface coordinates, they are
surface scalar fields. Thus,

df γS

dt
+ f γSζ̇

α
;α + f γS

2a
ȧ = f

∂γS

∂t
+ ∂f γS

∂ζ α
ζ̇ α + γS

∂f

∂z
(n)
S

żS
(n) + f γSζ̇

α
;α + f γS

a1/2

∂a1/2

∂t

= f
∂γS

∂t
+ f γS

a1/2

∂a1/2

∂t
+ γS

∂f

∂z
(n)
S

żS
(n) + (f γSζ̇

α);α (9)

where żn
S and ∂/∂zn

S are short-hand notations for żi
Sni (the propagation velocity of the surface

normal to itself) and nj∂/∂z
j

S (gradient in a direction normal to the surface), respectively. If
(9) is replaced into (8), the divergence theorem may be applied to the last term of (9) which
is transformed into a flow through the boundary of S; however, S is, in its turn, a boundary
and the boundary of a boundary is the empty set [18], therefore, this contribution is zero.
On the other hand surface integrals can be converted into volume integrals, provided that
the integrand is multiplied by the appropriate layer functional. If the integrand of the surface
integral has no normal derivatives, the simple layer functional defined on S is only needed;
if there is a normal derivative, the double layer functional must be used [22]

∮
γSż

(n)
S

∂f

∂z
(n)
S

dS = −
∫

f
∂(γSż

(n)
S δS)

∂z
(n)
S

dV

Using layer functionals and neglecting zero terms, (8) becomes

d

dt

∫
f (z)P (z; t) dMz =

∫
f

[∂P +

∂t
+

(∂γS

∂t
+ γS

a1/2

∂a1/2

∂t
+ P +żn

S

)
δS

− ∂(γSż
(n)
S δS)

∂z
(n)
S

]
dV (10)

If the boundary S were not included in the region where the PDF is defined, (8) would retain
only the volume integral in the first equality and (10) would be replaced by

d

dt

∫
f (z)P (z; t) dMz =

∫
f

[∂P +

∂t
+ P +żn

SδS

]
dV (11)

The full space comprises G ∪ G1 and it is not excluded the possibility of probability ex-
changes between G and G1. Since S is included in G but excluded from G1, (10) represents
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the inertial term in G and (11) in G1. Both inertial terms contain a contribution proportional
to δS ; that is to say, both may contribute to the appearance of a simple layer singularity at S.
In G1 the contribution to the singularity has a weight P +

G1ż
i
Sni with n pointing from G1 to

G and P +
G1 being the limit of P + as S is approached from G1; on the other hand, in G there

is a contribution P +
G żi

Sni with n pointing from G to G1 and P +
G being the limit of P + as S

is approached from G. It means that, if there is some inertial probability flow from G1 to S,
the inertial variation of the simple layer at S will be given by

∫
f

(∂γS

∂t
+ γS

a1/2

∂a1/2

∂t
− [

P +]S
żn
S

)
δS dV (12)

where [P +]S = (P +
G1 − P +

G )|S and n points from G to G1. Remember that test functions are
C2 in R

M and, thus, they do not have discontinuities in S. The full inertial contribution to
the evolution of scalar weights is given by

∫
f

[∂P +

∂t
+

(∂γS

∂t
+ γS

a1/2

∂a1/2

∂t
− [

P +]S
żn
S

)
δS − ∂(γSż

(n)
S δS)

∂z
(n)
S

]
dV (13)

Equation (13) may be rearranged to provide the full inertial contribution to the evolution of
the PDF, recalling that P +g1/2 = P +, γSa

1/2 = PS , and g1/2 has no time dependence in the
fixed coordinate system,

∫
f

∂P +

∂t
dMz +

∮
f

(∂PS

∂t
− [

P +]S a1/2

g1/2
żn
S

)
dM−1ζ +

∮
∂f

∂z
(n)
S

ż
(n)
S PS dM−1ζ (14)

3.2 Drift and Diffusion Terms

Drift and diffusion terms, the first and second contribution on the right hand side of (4) are
analysed together. The reason is that neither Ai , nor ∂2f/∂zi∂zj are tensorial quantities,
though they may be rearranged in a tensorial way when jointly studied. The evolution due
to drift and diffusion terms may be related to a Stochastic Differential Equation (SDE) [9,
20] in variable z solved by means of a Monte Carlo method where the particles follow
continuous, non-differentiable paths; jumps may be added as a discrete set of discontinuities
in the corresponding paths. The SDE, see (15), may be understood either in the Ito sense [9]
or in the Stratonovich sense [20].

dzi = hidt + giadWa (15)

where dWa represents the time differential of an M-dimensional set of Wiener processes
which are not affected by a change of variables, W represents a set of scalars with labels
instead of a covector as could be expected.

In the Stratonovich interpretation [20], hi and gia are contravariant vectors (with an ad-
ditional set of labels in the second case); however, drift and diffusion coefficients, as given
by (6) and (7), are Ai = hi + (1/2)gka∂gia/∂zk and Bij = giagja . This translates into the
following transformation laws for drift and diffusion coefficients, where a generic time-
dependent change of variables from z to z′ has been assumed,

A′i = ∂z′i

∂t
+ ∂z′i

∂zk
Ak + 1

2

∂2z′i

∂zm∂zn
Bmn (16)
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B ′ij = ∂z′i

∂zm

∂z′j

∂zn
Bmn (17)

It should be noticed that in the original reference [20], the 1/2 factor in the last term of (16)
is absent. The reason is that the time differential of the Wiener process, the Langevin force,
is normalized so that 〈dWa(t)dWb(t)〉 = 2δabdt , whereas in this article it is assumed that
〈dWa(t)dWb(t)〉 = δabdt as in [9].

In the Ito interpretation [9], drift and diffusion coefficients, as given by (6) and (7), come
straightforwardly from the SDE, Ai = hi and Bij = giagja . However, hi = Ai stops obeying
the rules of ordinary calculus under change of variables; not surprisingly, the application of
the many variables Ito calculus leads to the same rules as (16) and (17) for the transformation
of drift and diffusion coefficients. In the original formula to compare with, (4.3.17) of [9],
an explicit time dependence of the change of variables is not considered; so, the ∂z′i/∂t term
of (16) is lacking there.

In any event, with either Stratonovich or Ito interpretations, the result is the same: the
diffusion coefficient, Bij , is a second-order contravariant tensor, but the drift coefficient, Ai ,
is not. The ∂z′i/∂t contribution is a Galilean transformation of velocities and poses no prob-
lem; in the absence of diffusion [21], Ai behaves as a contravariant velocity vector defined
in phase space where, if needed, a zero time coordinate with A0 = 1, B00 = B0i = Bi0 = 0
and t ′ = z′0 = t = z0 could be added. The last term of (16) is the one which precludes proper
tensorial behaviour when there is a non-zero diffusion coefficient.

Since f is a scalar, ∂f/∂zj a covector, and f;kl = ∂2f/∂zk∂zl − Γ i
klf;i a second order

(0,2) tensor (Γ i
kl is the Christoffel symbol); the drift plus diffusion contributions to the

integrand on the right of (4) may be rewritten as,

Ai ∂f

∂zi
+ Bij

2

∂2f

∂zi∂zj
= Aif;i + Bkl

2
(f;kl + Γ i

klf;i ) =
(
Ai + Bkl

2
Γ i

kl

)
f;i + Bkl

2
f;kl (18)

which should transform as a scalar as the inertial term does. P has been extracted as a com-
mon scalar factor. The last term on the right of (18) is already a scalar (the double contraction
of a second-order contravariant tensor with a second-order covariant tensor) whereas the re-
maining term is Ai + Γ i

klB
kl/2 contracted with a covector, f;i , so Ai + Γ i

klB
kl/2 should be

a vector. This is checked next

∂z′j

∂zi

(
Ai + Γ i

kl

Bkl

2

)
1= ∂z′j

∂zi
Ai + B ′mn

2

[∂z′j

∂zi
Γ i

kl

∂zk

∂z′m
∂zl

∂z′n + ∂z′j

∂zi

( ∂2zi

∂z′m∂z′n − ∂2zi

∂z′m∂z′n
)]

2= ∂z′j

∂zi
Ai + ∂2z′j

∂zp∂zq

∂zp

∂z′m
∂zq

∂z′n
B ′mn

2
+ Γ ′j

mn

B ′mn

2

3= ∂z′j

∂zi
Ai + ∂2z′j

∂zp∂zq

Bpq

2
+ Γ ′j

mn

B ′mn

2
= A′j + Γ ′j

mn

B ′mn

2
(19)

In equality 1, the tensorial behaviour of Bkl has been used to express its old components as a
function of the new ones, B ′mn, and an additional quantity has been added and subtracted. In
equality 2, the transformation law of Christoffel symbols [1] is used whereas the remaining
term is rewritten in a different way [6] with second derivatives of the new coordinates instead
of second derivatives of the old coordinates. In equality 3, the diffusion tensor is expressed
in the old components and the transformation law given by (16), after separation of the
Galilean transformation, is finally applied.
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An alternative rearrangement of Ai , Bij and ∂2f/∂zi∂zj has been proposed by Gra-
ham [10, 20]. He showed that Ai − (1/2)g−1/2∂(g1/2Bij )/∂zj transforms as a contravariant
vector; it must be noticed that, in the original reference, a contravariant metrics is used in-
stead of a covariant one, so the sign of the exponential of the determinant of the metrics is
reversed, and the 1/2 factor is lacking for the reason previously explained. However, both
rearrangements may be easily proved to be related

Bik
;k = ∂Bik

∂zk
+ Γ k

lkB
il + Γ i

klB
kl = g−1/2 ∂g1/2Bik

∂zk
+ Γ i

klB
kl (20)

where it has been assumed that work is done with a connection compatible with the metrics,
−g−1/2∂(g1/2Bij )/∂zj = Γ i

klB
kl − B

ij

;j , where B
ij

;j is a contravariant vector which can be
added and subtracted to (18) to obtain

Ai ∂f

∂zi
+ 1

2
Bij ∂2f

∂zi∂zj
=

(
Ai − 1

2g1/2

∂g1/2Bij

∂zj

)
f;i + 1

2
(Bijf;i );j (21)

where the last term on the right is a scalar and, since the total expression on the left
has been proved to be a scalar, the first term on the right is also a scalar, and Ai −
(1/2)g−1/2∂(g1/2Bij )/∂zj a contravariant vector. Conversely, Graham’s proof could be used
as a starting point to verify the contravariant vector character of Ai + Γ i

klB
kl/2.

Both contravariant combinations are useful, Ai + Γ i
klB

kl/2 leads to an easy derivation of
the standard form of the Fokker-Planck equations whereas Graham’s combination leads in a
natural way to the so-called Stratonovich form [9] of the Fokker-Planck equation.

Drift and diffusion contributions to the right of (4) are rearranged according to (18).
Volume, inner contributions are considered first; scalar weights (with dV ) are considered
instead of probabilities (with dMz) to preserve manifest covariance

(
Ai ∂f

∂zi
+ 1

2
Bij ∂2f

∂zi∂zj

)
P +

=
[(

Ai + Bkl

2
Γ i

kl

)
f;i + Bij

2
f;ij

]
P +

=
[
f

(
Ai + Bkl

2
Γ i

kl

)
P +

]
;i

− f
[(

Ai + Bkl

2
Γ i

kl

)
P +

]
;i

+ 1

2

(
BjiP +f;j

)
;i

− 1

2

[(
BijP +)

;j f
]
;i + f

2

(
BijP +)

;j i
=

[
f

(
AiP + − 1

2g1/2

∂BijP +g1/2

∂zj

)

+ f;j
Bji

2
P +

]
;i

− f

g1/2

(∂AiP +g1/2

∂zi
− 1

2

∂2BijP +g1/2

∂zi∂zj

)
(22)

where mute indices have been freely renamed and the symmetric character of Bij , check
its definition in (7), applied if needed. The chain rule and the rule for the divergence of a
vector, V i

;i = g−1/2∂V ig1/2/∂zi , and of a second-order tensor, T
ij

;j = g−1/2∂T ijg1/2/∂zj +
Γ i

klT
kl , have been used. After applying a volume integral to (22), the expression of change

of the global PDF (with possible singular contributions) due to the evolution of its inner
contribution is obtained. This expression is valid in G and in G1 and, as it happened with
the inertial contribution, there is a contribution from both of them to the singularity at S with
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opposite sign.

∫
f

g1/2

(1

2

∂2BijP +g1/2

∂zi∂zj
− ∂AiP +g1/2

∂zi

)
dV

−
∮

f

[
AnP + − 1

2g1/2

∂BnjP +g1/2

∂zj

]S

dS −
∮

∂f

∂zj

[Bjn

2
P +

]S

dS

=
∫

f
(1

2

∂2BijP +

∂zi∂zj
− ∂AiP +

∂zi

)
dMz +

∮
f

([
1

2

∂BnjP +

∂zj
− AnP +

]S

a1/2

g1/2

+ 1

2

∂(a/g)1/2[BαnP +]S
∂ζ α

)
dM−1ζ −

∮
∂f

∂z(n)

[B(n)(n)

2
P +

]S a1/2

g1/2
dM−1ζ (23)

where index n has been used to indicate a component normal to S and it has been assumed
that the metrics of the full phase space R

M has no discontinuities at S, though its derivative
parallel to S is not necessarily zero. The last term of the first expression has been expanded
in the second equality by isolating the derivative of the test function normal to S, using the
chain rule for the components parallel to S (when computing surface quantities, work is
assumed to be in a coordinate system with M − 1 components locally parallel to S at S plus
one component normal to S at S) and applying the divergence theorem on a closed surface
what yields a zero contribution since the boundary of a boundary is the empty set [18]. As
in the inertial term, [W ]S means a difference between the value of W in the limit as G1

approaches a point in S and the limit at the same point coming from G, [W ]S = (WG1 −
WG)|S .

Next, drift and diffusion are rearranged according to (21). An expression similar to (22)
is obtained for the volume contribution

(
Ai ∂f

∂zi
+ 1

2
Bij ∂2f

∂zi∂zj

)
P +

=
[
A

i
f;i + 1

2
(Bijf;i );j

]
P +

= (f A
i
P +);i − f (A

i
P +);i + 1

2
[(f;iBijP +);j − (f BijP +;j );i + f (BijP +;j );i]

=
[
f (A

i
P + − Bij

2
P +;j ) + f;j

Bji

2
P +

]
;i

− f
(
A

i
P + − (Bij /2)P +;j

)
;i (24)

where A
i

is a short-hand notation for the contravariant vector Ai −g−1/2∂((Bij /2)g1/2)/∂zj .
The same considerations leading from (22) to (23) are applied to (24) in order to obtain the
equivalent of (23)

∫
f

[(Bij

2
P +;j

)
;i

− (A
i
P +);i

]
dV +

∮ {
f

[Bnj

2
P +;j − A

n
P +

]S − f;j
[Bjn

2
P +

]S}
dS

=
∫

f
[(Bij

2
P +;j

)
;i

− (A
i
P +);i

]
dV +

∮
f

([Bnj

2
P +;j − A

n
P +

]S
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+ 1

2
[BαnP +]S;α

)
dS −

∮
∂f

∂z(n)

[B(n)(n)

2
P +

]S

dS

=
∫

f
[(Bij

2
P +;j

)
;i

− (A
i
P +);i

]
dV +

∫
f

([Bnj

2
P +;j − A

n
P +

]S

+ 1

2
[BαnP +]S;α

)
δS dV +

∫
f

∂

∂z(n)

([B(n)(n)

2
P +

]S

δS

)
dV (25)

with an explicit use of singularities at the boundaries with volume integrals instead of surface
integrals. Equations (23) and (25) may be proved to be identical [20].

Now, the explicit singular contribution to diffusion and drift is analysed. In the deriva-
tion of a term analogous to (22) some care is needed: derivatives of the test function in a
direction normal to S must be isolated. This task is performed straightforwardly by going
back to the integrand on the right of (4). Generic coordinate changes are now those which
modify surface coordinates leaving unmodified the component normal to the surface. Under
this restriction, both ∂f/∂zn and ∂2f/∂zn2 behave as scalar fields defined on the surface S,
whereas ∂2f/∂ζ αzn is a covector defined on S with regard to the index α (∂zi/∂z′n = δi

n

when only coordinates parallel to S are modified). The expression equivalent to (18) reads
now

(
Aα + Bβδ

2
Γ α

βδ

)
f;α + Bβδ

2
f;βδ + A(n) ∂f

∂z(n)
+ B(n)(n)

2

∂2f

∂z(n)2
+ B(n)α ∂2f

∂z(n)∂ζ α
(26)

where use has been made of the symmetry of Bij . The expression equivalent to (21) is

(
Aα − 1

a1/2

∂a1/2(Bαβ/2)

∂ζ β

)
f;α +

(Bαβ

2
f;α

)
;β

+ A(n) ∂f

∂z(n)

+ B(n)(n)

2

∂2f

∂z(n)2
+ B(n)α ∂2f

∂z(n)∂ζ α
(27)

The derivation of the surface equations similar to (22) and (24) follows the same lines.
The only difference is that the determinant of the metrics is now a and the presence of
normal derivatives of the test function which are equivalent to layer generalised functions
defined on S; the chain rule is applied to the last term of (26) and (27).

[
f

(
AαγS − 1

2a1/2

∂BαβγSa
1/2

∂ζ β

)
+ f;β

Bβα

2
γS

]
;α

− f

a1/2

(∂AαγSa
1/2

∂ζ α
− 1

2

∂2BαβγSa1/2

∂ζ α∂ζ β

)

+ γSA
(n) ∂f

∂z(n)
+ γS

B(n)(n)

2

∂2f

∂z(n)2
+

(
γSB

(n)α ∂f

∂z(n)

)
;α

− (γSB
(n)α);α

∂f

∂z(n)
(28)

[
f

(
A

α

SγS − Bαβ

2
γS;β

) + f;β
Bβα

2
γS

]
;α

− f
(
A

α

SγS − Bαβ

2
γS;β

)
;α + γSA

(n) ∂f

∂z(n)

+ γS

B(n)(n)

2

∂2f

∂z(n)2
+

(
γSB

(n)α ∂f

∂z(n)

)
;α

− (γSB
(n)α);α

∂f

∂z(n)
(29)

where A
α

S is now Graham’s vector on a surface Aα − a−1/2∂((Bαβ/2)a1/2)/∂ζ β .
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Since the final result must be integrated over a closed surface, a boundary manifold with-
out boundaries itself, pure surface divergence terms will have a zero integral contribution.
The expressions equivalent to (23) and (25) read

∮
f

(1

2

∂2BαβPS

∂ζ α∂ζ β
− ∂AαPS

∂ζ α

)
dM−1ζ +

∮
∂f

∂z(n)

(
A(n)PS − ∂B(n)αPS

∂ζ α

)
dM−1ζ

+
∮

∂2f

∂z(n)2
PS

B(n)(n)

2
dM−1ζ (30)

∫
f

[(Bαβ

2
γS;β

)
;α

− (A
α

SγS);α
]
δS dV −

∫
f

∂

∂z(n)

[(
A(n)γS − (B(n)αγS);α

)
δS

]
dV

+
∫

f
∂2

∂z(n)2

(
γS

B(n)(n)

2
δS

)
dV (31)

where there are no contributions from either G or G1, since the previous expressions are
intrinsic to S. It should be remembered [16] that the exact value of drift and diffusion coef-
ficients on the surface may be different from their limits, as S is approached, inside either G

or G1. In (31), the triple layer functional has been defined by

∮
ν
∂2f

∂n2
dS =

∫
f

∂2(νδS)

∂n2
dV

Now, the global drift plus diffusion contribution may be written down in two different
ways. In the first one, (23) and (30) are added to yield (32); (25) plus (31) lead to (33) which
is the second option

∫
f

(1

2

∂2BijP +

∂zi∂zj
− ∂AiP +

∂zi

)
dMz +

∮
f

(
1

2

∂2B
αβ

S PS

∂ζ α∂ζ β
− ∂Aα

SPS

∂ζ α

+
[

1

2

∂BnjP +

∂zj
− AnP +

]S

a1/2

g1/2
+ 1

2

∂(a/g)1/2[BαnP +]S
∂ζ α

)
dM−1ζ

+
∮

∂f

∂z(n)

(
A

(n)
S PS − ∂B

(n)α
S PS

∂ζ α
−

[B(n)(n)

2
P +

]S a1/2

g1/2

)
dM−1ζ

+
∮

∂2f

∂z(n)2

B
(n)(n)
S

2
PS dM−1ζ (32)

∫
f

[Bij

2
P +;j − A

i
P +

]
;i

dV +
∫

f

((B
αβ

S

2
γS;β − A

α

SγS

)
;α

+
[Bnj

2
P +;j − A

n
P +

]S + 1

2
[BαnP +]S;α

)
δS dV +

∫
f

∂

∂z(n)

{[
(B

(n)α
S γS);α

− A
(n)
S γS +

[B(n)(n)

2
P +

]S]
δS

}
dV +

∫
f

∂2

∂z(n)2

(
γS

B(n)(n)

2
δS

)
dV (33)

In (32) and (33) a subindex S has been added to drift and diffusion coefficients com-
puted on S since a discontinuity in their values at the boundary is not excluded. The term

(B
(n)α
S γS);α − A

(n)
S γS in (33) could be rewritten as (B

(n)α
S γS/2);α + (B

(n)α
S /2)γS;α − A

(n)

S γS .
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3.3 Jump Term

The last contribution to (4) is the jump term.
∫

f (z)
{
−
∫ [

W(z|x; t)P (x; t) − W(x|z; t)P (z; t)]dMx
}

dMz (34)

where P and W are PDF’s: the first one is the PDF of being somewhere in the phase space
and the second one is the PDF of jumping to another point, conditional on being at the
original point. Equation (34) may be expressed in terms of scalar weights instead of PDF’s

∫
f (z)

{
−
∫ [

W(z|x; t)P (x; t) − W(x|z; t)P (z; t)]dxV
}

dzV (35)

With either a PDF or a scalar weight form, both P,P and W,W have to be decomposed
into volume and surface contributions. If the final point lies in S, W and W are of the
singular surface type: WS defined on S and γWδS , respectively; if the original point lies in
S, P and P are of the singular surface type: PS defined on S and γSδS , respectively.

The full phase space comprises G ∪ S ∪ G1; so, there are nine basic sorts of jump to
consider: G → G, G → S, G → G1, S → G, S → S, S → G1, G1 → G, G1 → S and
G1 → G1. Since G1 acts as an external reservoir, G1 → G1 processes are irrelevant from
the point of view of studying what occurs in G. On the other hand, the fine-grained de-
tail of where in G1 a particle jumps from either G or S is irrelevant, too; it only matters
the global integral probability of any jump to an inner point of G1 as a death process,
D(z; t) = −

∫
G1 W(x|z; t) dMx = −

∫
G1 W(x|z; t) dxV = D(z; t). In its turn, the fine-grained

detail of where in G1 is a particle jumping from, into either G or S, is also irrelevant it
only matters the global integral probability of any jump from an inner point of G1 as a birth
process, B(z; t) = −

∫
G1 W(z|x; t)P (x; t) dMx = −

∫
G1 W(z|x; t)P (x; t) dxV = g1/2B(z; t) =

g1/2(z)−
∫

G1 W(z|x; t)P (x; t)dxV . The previous definitions of death and birth processes as-
sume that the PDF in G1 is normalized; anyway, these integral definitions are possible phys-
ical interpretations, which make the whole formulation consistent in terms of the only rel-
evant values: the final death and birth rates regardless of how is P in G1. Any reference to
G1 could have been supressed and one could have assumed that, apart from jumps inside G,
there were also death and birth processes with given rates.

The details of the origin and end of jumps in (34) may be explicitly stated
∫

G

f (z)
{
−
∫

G

[
W(z|x; t)P +(x; t) − W(x|z; t)P +(z; t)]dMx

}
dMz

+
∫

S

f (ζ )
{
−
∫

G

[
WS(ζ |x; t)P +(x; t) − W(x|ζ ; t)PS(ζ ; t)]dMx

}
dM−1ζ

+
∫

G

f (z)
{
−
∫

S

[
W(z|ξ ; t)PS(ξ ; t) − WS(ξ |z; t)P +(z; t)]dM−1ξ

}
dMz

+
∫

S

f (ζ )
{
−
∫

S

[
WS(ζ |ξ ; t)PS(ξ ; t) − WS(ξ |ζ ; t)PS(ζ ; t)]dM−1ξ

}
dM−1ζ

+
∫

G

f (z)
[
BG(z; t) − DG(z; t)P +(z; t)]dMz

+
∫

S

f (ζ )
[
BS(ζ ; t) − DS(ζ ; t)PS(ζ ; t)]dM−1ζ (36)
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where the first line represents G → G jumps, the second line represents the variation in
singular PDF at S due to jumps G → S (increase) and S → G (decrease), the third line
represents the variation in volume PDF at G due to jumps S → G (increase) and G → S

(decrease), the fourth line represents S → S jumps, the fifth line birth and death processes
in G, and the sixth line birth and death processes in S.

An expression equivalent to (36) in terms of scalar weights reads
∫

f (z)
{
−
∫ [

W(z|x; t)P +(x; t) − W(x|z; t)P +(z; t)]dxV
}

dzV

+
∫

f (z)
{
−
∫ [

γW(z|x; t)P +(x; t) − W(x|z; t)γS(z; t)
]
dxV

}
δS(z, t) dzV

+
∫

f (z)
{
−
∫ [

W(z|x; t)γS(x; t) − γW(x|z; t)P +(z; t)]δS(x, t) dxV
}

dzV

+
∫

f (z)
{
−
∫ [

γW(z|x; t)γS(x; t) − γW(x|z; t)γS(z; t)
]
δS(x, t) dxV

}
δS(z, t) dzV

+
∫

f (z)
[
BG(z; t) − DG(z; t)P +(z; t)]dzV

+
∫

f (z)
[
BS(z; t) − DS(z; t)γS(z; t)

]
δS(z, t) dzV (37)

Were the boundary excluded from the domain, G → G plus death and birth processes
would be the only relevant terms remaining. It means that second, third, fourth and sixth
lines in (36) and (37) would be supressed, whereas death and birth rates would be modified
to take into account what, previously, have been explicitly considered as G → S and S → G

exchanges. Namely, the effect of lines two and three should be retained as modified death
and birth rates in line five, whereas lines four and six would become irrelevant.

3.4 Gathering All Terms

The final PDF evolution equation is obtained by joining (14) (inertial term), (32) (drift plus
diffusion terms) and (36) (jump term). After that, volume integrals are separated from sur-
face integrals and the latter are further split according to the order of the normal derivative
of the test function. Since test functions are free members of class C2 in R

M , the result-
ing integral equalities must be satisfied by the factors multiplying the test functions in the
integrands and no assumption on the properties of f close to the boundary is made

∂P +

∂t
= −∂AiP +

∂zi
+ 1

2

∂2BijP +

∂zi∂zj
+ −

∫
G

[
W(z|x; t)P +(x; t) − W(x|z; t)P +(z; t)]dMx

+ −
∫

S

[
W(z|ξ ; t)PS(ξ ; t) − WS(ξ |z; t)P +(z; t)]dM−1ξ + BG − DGP + (38)

∂PS

∂t
= −∂Aα

SPS

∂ζ α
+ 1

2

∂2B
αβ

S PS

∂ζ α∂ζ β
+

[
1

2

∂BnjP +

∂zj
+ (żn

S − An)P +
]S

a1/2

g1/2

+ 1

2

∂[BαnP +]S(a/g)1/2

∂ζ α
+ −

∫
G

[
WS(ζ |x; t)P +(x; t) − W(x|ζ ; t)PS(ζ ; t)]dMx

+ −
∫

S

[
WS(ζ |ξ ; t)PS(ξ ; t) − WS(ξ |ζ ; t)PS(ζ ; t)]dM−1ξ + BS − DSPS (39)



318 J. Hierro, C. Dopazo

żn
SPS = An

SPS − ∂Bnα
S PS

∂ζ α
−

[B(n)(n)

2
P +

]S a1/2

g1/2
(40)

B
(n)(n)
S PS = 0 (41)

Equation (38) gives the evolution of the PDF in G, (39) gives the evolution of the singular
contribution to the PDF in S, (40) and (41) are restrictions needed to guarantee that no
generalised functions of order higher than the simple layer develop. In (39), it has been
used the fact that the velocity of the boundary żn

S has a unique value defined on S to make
żn
S[P +]S = żn

S(P
+
G1 − P +

G ) = [żn
SP

+]S .
The final scalar weight evolution equation may be obtained in a similar way from (13),

(33) and (37)

∂P +

∂t
=

(Bij

2
P +;j − A

i
P +

)
;i

+ −
∫ [

W(z|x; t)P +(x; t) − W(x|z; t)P +(z; t)]dxV

+ −
∫

S

[
W(z|ξ ; t)γS(ξ ; t) − γW (ξ |z; t)P +(z; t)]dξS + BG − DGP + (42)

∂γS

∂t
= − γS

2a
ȧ +

(B
αβ

S

2
γS;β − A

α

SγS

)
;α

+
[Bnj

2
P +;j + (żn

S − A
n
)P +

]S

+ 1

2
[BαnP +]S;α + −

∫ [
γW(z|x; t)P +(x; t) − W(x|z; t)γS(z; t)

]
dxV

+ −
∫

S

[
γW(z|ξ ; t)γS(ξ ; t) − γW(ξ |z; t)γS(z; t)

]
dξS + BS − DSγS (43)

żn
SγS = A

n

SγS − (Bnα
S γS/2);α − (Bnα

S /2)γS;α −
[B(n)(n)

2
P +

]S

(44)

B
(n)(n)
S γS = 0 (45)

Equation (42) gives the evolution of the scalar weight field in G, (43) provides the evolution
of the singular contribution to the scalar weight field in S, (44) and (45) pose restrictions
equivalent to those of (40) and (41) to guarantee that there are neither double nor triple layer
singularities, which cannot be normalized.

If probabilities were to be computed in G instead of G, leaving S out of the previous
analysis, the only relevant equations would be (38) and (42) without G → S and S → G

jumps, the third term on the right in both cases. The reason is that, without S in the domain,
values defined exactly at S such as γS and the discontinuities in volume flow properties
may be assumed to be zero; whereas jumps involving S may be accounted as birth-death
processes.

It is interesting to notice that probability currents (drift plus diffusion contributions) are
defined inside G by means of AiP + − (1/2)∂(BijP +)/∂zj = Φi for the standard set of

equations and A
i
P + − (1/2)BijP +;j = Φ

i
for the Stratonovich-like set. There is also an in-

ertial probability current, in the case of moving boundaries, defined by either żn
SP

+ or żn
SP

+.
The use of these probability currents allows for a more compact writing of the previous sets
of PDF evolution equations.
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3.5 Renormalization

From (3), it should be satisfied

d

dt

[∫
P + dV +

∮
γS dS

]
= 0 (46)

Recalling the computation of the inertial contribution, the previous expression may be trans-
formed into

∫
∂P +

∂t
dV +

∮ {∂γS

∂t
+ γs

a1/2

∂a1/2

∂t
+ żn

SP
+

G

}
dS = ẆN = 0 (47)

where WN is the normalized global weight which should be unity and ẆN its time derivative.
Equations (42) and (43) are substituted into (47) and the divergence theorem is applied,

remembering that its application in S yields a zero contribution. Most terms cancel each
other, jump terms, divergences in S and the divergence in G, with the boundary value as S

is approached from inside G. However, there are some terms remaining,

ẆN =
∮ (B

nj

G1

2
P +

G1;j + (żn
S − A

n

G1)P
+
G1

)
dS +

∫
(BG − DGP +) dV

+
∮

(BS − DSγS) dS (48)

corresponding to the global probability flow, inertial, drift and diffusion, from the external
region, G1, to the inner one, G, plus the global balance between birth and death processes.
ẆN , according to (48), could be different from zero; this problem may be solved [21] adding
a term proportional to P or P (depending on whether scalar weights of PDF’s are used) to
compensate it.

−ẆNP + should be added to the right of (38), −ẆNPS to the right of (39), −ẆNP + to
the right of (42) and −ẆNγS to the right of (43) when there is some net flow of probability
inward or outward of the studied zone.

It is interesting to notice that ẆN is hardly affected by including or excluding S in the
domain: instead of variables evaluated as G1 approaches S, there will be variables computed
as G approaches S and birth-death processes at S stop being considered. Anyway, if S is out
of the domain, there is no point in making a difference between approaching S from G and
approaching S from G1; XG1 = XG = XS could be assumed for any volume property X.
Instead of (48), the renormalization would be given by

ẆN =
∮ (B

nj

G

2
P +

G;j + (żn
S − A

n

G)P +
G

)
dS +

∫
(BG − DGP +) dV (49)

namely, the divergence term in G, as there are no surface terms at the boundary to cancel it,
plus the global birth-death balance in the inner region.

4 Physical Interpretation

Equations (38) and (42) represent standard differential Chapman-Kolmogorov equations [9]
defined inside an open M dimensional manifold, G ∈ R

M , with the possibility of having
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birth-death processes and jumps from and into a possible singularity at the boundary. The
first equation is in the standard form, whereas the second one is in the Stratonovich form. Its
integration by means of Monte Carlo processes is well known [9, 20] in terms of Stochastic
Differential Equations (SDE) equivalent to the partial differential terms on the right, drift
plus diffusion, which define random paths for each Monte Carlo particle punctuated with
jumps, discontinuities in the path, whose amplitude and frequency of occurrence has a prob-
ability given by the integral terms on the right. Birth processes appear as paths starting from
scratch inside G, whereas death processes are represented by paths ending inside G. The
presence of a subspace G1 = R

M\G, considered as an external probability reservoir, allows
for a physical picture of birth-death processes as a special kind of jumps from and into G1.
Jumps from or into the boundary S, −

∫
S

[
W(z|ξ ; t)PS(ξ ; t) − WS(ξ |z; t)P +(z; t)]dM−1ξ in

(38) or the equivalent term in (42), have a correlate with opposite sign in the evolution of
the singular probability restricted to S, −

∫
G

[
WS(ζ |x; t)P +(x; t) − W(x|ζ ; t)PS(ζ ; t)]dMx

in (39) or the equivalent term in (43). This means that jumps G → S and S → G are just
redistribution terms which do not affect the global integral probability weight. Were there
neither jumps nor birth-death processes, the usual Fokker-Planck equations would be recov-
ered. Fokker-Planck equations restricted to the particular case with no diffusion are Liouville
equations. Were there neither diffusion, nor drift, the corresponding particular case would
be that of Master equations.

Equations (39) and (43) provide with the evolution of either the PDF or the scalar weight
inside the boundary of G defined as a closed, M − 1, piecewise, smooth manifold. In a
Monte Carlo picture, a singularity at a M − 1 manifold shows as a set of particles whose
movement has some restriction which favours new positions inside that manifold; not sur-
prisingly, terms equivalents to those defined in G are found in S: there are birth-death, inner
jumps, drift and diffusion terms with the same form as those defined in G but restricted
to positions inside S. The use of intrinsic surface coordinates would permit Monte Carlo
particles moving inside S in a natural way. Aside from that, there are also exchange terms
between S and G plus the effect of a possible deformation of S in its intrinsic metrics de-
terminant. This last contribution only shows explicitly when the equation is expressed in
terms of a scalar weight surface function; when the equation is expressed in terms of a sur-
face PDF, the determinant metrics is included in the PDF. Exchange terms, in their turn, are
easily classified in three classes:

(i) The reverse of the effect of G → S and S → G jumps. Reverse effect with regard to
the same contribution to the probability inside G. What is lost by G is won by S and
viceversa.

(ii) Probability currents normal to S which may come from either G or G1. The effect of
a moving boundary, steming from the inertial term, is included here if present, so that
the only relevant probability currents with regard to singularity creation or depletion
are those relative to the movement of the boundary.

(iii) An additional contribution from the crossed diffusion between diffusive transport paral-
lel to S and diffusive transport normal to it, (1/2)∂{[BαnP +]S(a/g)1/2}/∂ζ α in (39) or
(1/2)[BαnP +]S;α in (43). This exchange contribution is zero in the important particular
case that the diffusion tensor is diagonal.

All the exchange contributions are balanced: what is won in one side, is lost in another
side when the full R

M = G ∪ S ∪ G1 is studied.
Exchange terms are more naturally expressed in terms of scalar weights, see (43), than in

terms of PDF’s, see (39) where the square root of the ratio of the determinant of the metrics
in S and R

M , (a/g)1/2, appears in all of them. The reason being that, in both formulations,
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these exchange terms must be the same, whereas currents are more naturally expressed in a
manifest covariant formulation. It is straightforward to check that

[BαnP +]S;αdS = 1

a1/2

∂[BαnP +a1/2]S
∂ζ α

a1/2dM−1ζ = ∂[BαnP +]S(a/g)1/2

∂ζ α
dM−1ζ

[
Φ

n]S
dS =

[
An P +

g1/2
− Bnj

2

∂P +

∂zj
− P +

2g1/2

∂Bnjg1/2

∂zj

]S

a1/2dM−1ζ

=
[
− 1

2

∂BnjP +

∂zj
+ AnP +

]S a1/2

g1/2
dM−1ζ = [

Φn
]S a1/2

g1/2
dM−1ζ

where the first term on the left in both expressions corresponds to exchange terms in (43)
and the last term on the right corresponds to the equivalent exchange term in (39). In the

second derivation, it has been used the definition of A
i

in terms of Ai , Bij and g1/2 and that
of P + = P +g1/2. In both expressions, it has been assumed that the metrics is continuous
everywhere.

A better physical insight may be obtained by considering a Monte Carlo (particle) in-
tegration method: the behaviour of Monte Carlo particles at the boundary may be related
to that of a light beam: it is either transmitted through the boundary, or absorbed by it, or
emitted from it, or reflected. −[żn

S + Φ
n]S = kn 
= 0 means that there is a singularity at the

boundary, that a non-zero surface integral value of −(żn
S +Φ

n
)G1 would require a renormal-

ization of the PDF and that, depending on the sign, there is either a kn probability current
absorbed by the boundary or emitted from it. The value of −(żn

S +Φ
n
)G1 would provide the

transmission in either sense according to its sign. On the other hand, kn = 0 is compatible
with either the presence of a previously created singularity which does not interact with the
non-singular component, or with the absence of singularities. Anyway, either −(żn

S + Φ
n
)G

and −(żn
S +Φ

n
)G1 are both zero or are both equal and different from zero. Both values equal

to zero mean that there is no probability current through the boundary which is either a nat-
ural, unattainable boundary [12] (particles would take an infinite time to reach it) or a regular
boundary [12] with perfect reflection. Both values equal and different from zero are, in their
turn, related to either an exit-absorbing or an entrance boundary condition [12] depending
on the sign: particles either reach the limit and disappear there because of transmission into
G1 or come from G1 and propagate into G. A regular boundary condition with partial reflec-
tion would be related to a finite, non-zero value of −(żn

S + Φ
n
)G and −(żn

S + Φ
n
)G1 which

should be matched by the fraction of particles being either absorbed/emitted or transmit-
ted. It should be noticed that the difference between absorption at S and transmission into
G1 or between emission at S and transmission from G1 is a matter of the physical picture
chosen to explain the behaviour at the boundary. It could also be said that, whereas absorp-
tion/emission are related to interactions with a singularity at S, transmission is related to
deletion/creation of particles at the boundary, that is to say, to a birth-death process at S,
without involving any reference to an external probability reservoir at G1.

The restriction given by (41) or (45) imply that the presence of a singularity at the bound-
ary is incompatible with a non-zero value of the diffusion normal to the boundary, at the
boundary. Either PS = γSa

1/2, or B
(n)(n)
S , or both of them are zero. In a Monte Carlo method,

it is immediate to realise that, were such a situation to appear (for instance as an initial con-
dition), the diffusion process, which is random and normal to the singularity, would wear it
out in one time step.

The restriction implied by (40) or (44) is more interesting. It is related to the possi-
ble movement of a singular boundary due to a non-zero probability current, normal to the
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boundary and defined at the boundary, plus an extra contribution from cross diffusion trans-
port between coordinates parallel to S and normal to it, plus a contribution from a possible
discontinuity in normal diffusion between G and G1 at S. Notice that, whereas a non-zero
normal diffusion at S is incompatible with a singularity at S, a non-zero normal drift (prob-
ability current) is not. In a Monte Carlo method, the first one transferred all the particles
inside S to new random positions which could not define a new singularity, whereas the
second one implies an ordinary and regular movement of all the particles inside S in a way
which, at most, implies a deformation of S. The extra cross contribution has the same nature
and may be thought of as an extra drift which comes from gradients parallel to S of cross
diffusion between coordinates parallel to S and normal to it. However, the contribution from
the discontinuity in normal diffusion at S is closely related to exchange terms in (39) and
(43) and could be present even if there were no singularity at S. Of course, in such a situa-
tion a non-zero [B(n)(n)P +]S would imply the appearance of a non-integrable, double-layer
singularity at the boundary, and therefore, it should be zero. In a Monte Carlo method, the
solution accommodates itself with this restriction in a natural way. If there is a singularity
and a non-zero discontinuity [B(n)(n)P +]S , the singularity starts moving. If there is not a
singularity and [B(n)(n)P +]S 
= 0, a gradient in B(n)(n)P + (no matter its stiffness) develops
close to S so that [B(n)(n)P +]S = 0 in the next time step. Diffusion moves particles between
the G and the G1 regions by a Wiener process, so that in the contact zone intermediate
values between those typical of G and of G1 develop instantly and these values may be
extrapolated to fit the condition [B(n)(n)P +]S = 0.

Although, [B(n)(n)P +]S = 0, there are some differences between the situation where
(B(n)(n)P +)G and (B(n)(n)P +)G1 are both equal and different from zero and the situation
where both are equal to zero. A non-zero value implies that there are particles reaching the
boundary and being reflected at it (regular boundary condition [12]), whereas a zero value
is related to either unattainable boundary condition (natural or entrance [12]) or to the ab-
sence of reflection (exit-trap-absorbing boundary condition [12]). In effect, let us assume
that there is a non-zero value of (B(n)(n)P +)G and that an Euler, weak scheme [14] is used to
integrate the corresponding SDE in a Monte Carlo method. Under those assumptions, half
the particles at a distance from the boundary less than

√
B(n)(n)	t cross over the boundary

in a time step, 	t , and each one transports an equivalent of a “normal, diffusive, phase-space
speed” of value

√
B(n)(n)/	t . In this example, [B(n)(n)P +]S = 0 simply implies an overall

zero value of the product of the number of particles crossing S because of diffusion times
its “normal, diffusive, phase-space speed”; that is to say, if an equivalence of linear mo-
mentum in phase space were defined, its diffusive contribution at each point of S would be
zero when all contributions coming from all senses were computed. Two different physical
pictures, in a particle method, may be applied to explain the previous behaviour: either as
many particles as those lost because of diffusion from G into G1, weighted by B

(n)(n)
G , are

replaced by particles coming by diffusion from G1 into G, weighted by B
(n)(n)

G1 , or particles
that should cross S because of diffusion are reflected at S and return into their original do-
main. In both pictures, the value of (B(n)(n)P +)G coming in must be the same as that going
out. (B(n)(n)P +)G = (B(n)(n)P +)G1 is straightforwardly imposed with the reflection picture;
as long as, with a picture based on the existence of a diffusive exchange between G and G1,
it is necessary to recompute the value of B(n)(n) for each particle crossing S and modify the
number of particles crossing (B(n)(n)P + preserved).

Care has to be taken to distinguish between bulk diffusion and gradient diffusion: the
probability current, Φn, comprises a contribution due to the gradient of B(n)(n)P + which
must be interpreted in terms of either absorption/emission or transmission since it is, tech-
nically, an extra drift contribution; on the other hand, the bulk value of B(n)(n)P +, its exact
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value at the boundary, is related to reflection. In practical problems, it might be difficult to
extrapolate the exact value of B(n)(n)P + at the boundary, from inner values, since the pres-
ence of a stiff gradient in its functional dependence close to the boundary is not excluded.
Some information about the intensity of reflection and its possible random delay with an
exponential dependence on time (sticky boundary condition [12]) is needed to accurately
describe boundary conditions.

Renormalization has a very natural physical interpretation [21]: the global probability in
R

M = G∪ S ∪G1 is preserved since its boundaries are at ∞ and cannot be reached, but this
is not necessarily true when speaking of the probability restricted to G = G ∪ S. Accord-
ing to this interpretation P + is really the probability conditioned to z ∈ G and PS is really
the probability conditioned to z ∈ S and exchanges with G1 (the probability conditioned to
z ∈ G1) are not excluded. The renormalization implies that the partial weight of the inte-
gration of the global PDF in the region where it is conditioned, is used as a divisor of the
conditioned PDF.

The overall picture of the derivation presented in this paper is that of a weak formulation
similar to that employed in generalised function analysis [22] to develop derivatives in a
generalised sense

∂f

∂zj
=

{
∂f

∂zj

}
+ [f ]S cos(n · zj )δS

∂2f

∂zi∂zj
=

{
∂2f

∂zi∂zj

}
+ ∂

∂zi
([f ]S cos(n · zj )δS) +

[{ ∂f

∂zj

}]S

cos(n · zi)δS

where f is a functional defined by a class C2 function, G ∪ G1 → R, with a possible dis-
continuity in both its value and its derivatives at S, which acts on a space of test func-
tions through an integration with the differential form dV . Partial derivatives to the left of
the previous expressions mean derivatives in the generalised function sense whereas partial
derivatives between the symbol {} mean derivatives in the standard function sense.

Looking at either (22) or (24), a weak interpretation may be given to the origin of Ito
calculus or of the formula to relate drift coefficients in Chapman-Kolmogorov differential
equations and in SDE according to Stratonovich. In a weak sense, a Taylor series expan-
sion up to second order is needed to compute time evolutions to first order in time since the
underlying stochastic processes show a first order in time contribution coming from the sec-
ond order of the Taylor series. The problem is now that the second order term of the Taylor
series is not a scalar field since it is the contraction of a second-order contravariant tensor,
the diffusion one, with a second-order partial derivative of a scalar test function which is
not a second-order tensor (though the first-order partial derivative is indeed a covector). The
need that all laws of physics be written in a manifest covariant form leads in a natural way
to either Ito calculus for the transformation of drift terms or Stratonovich relation between
drift in a SDE and the equivalent Chapman-Kolmogorov differential equation. The lack of
manifest covariance in the second-order term (in Taylor sense, first-order in time) only may
be compensated with the corresponding modification in the first-order term (in Taylor and
time sense) which stops being manifest covariant so that the addition of both terms preserves
manifest covariance.

5 Comparison with Previous Work

Master and birth-death terms do not pose new problems because of the presence of a singu-
larity at the boundary, in comparison to the situation without it. These terms were included
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by the sake of completeness and their analysis follows the standard situation [9] without
singularities provided that care is taken to isolate regular from singular zones when com-
puting them. Of course, were this terms present at the boundary, the overall balance of
drift-diffusion contributions should match that of master-birth-death ones.

5.1 One Dimensional Case

In the one dimensional case, the boundary reduces to a discrete set of points which estab-
lish the intervals in R where the probability is defined. The case with two extremal points
defining a single interval is the simplest one and the addition of more intervals does not pose
any technical problem apart from the need of master processes to account for the exchange
of probability among them if such exchanges occur. Feller [7, 8] studied thoroughly this
problem under the following assumptions: the metrics in R is Euclidean (g1/2 = 1), there
are neither moving boundaries, nor birth-death processes, nor inner jumps in the regular
zone, nor direct jumps from the inner zone into the extremal points; however jumps between
extremal points and from them into the inner regular zone are considered, and, finally, no
probability flow from or into G1 is allowed. Under the previous assumptions, the set of PDF
equations reduces to

∂P +

∂t
= −∂AP +

∂z
+ 1

2

∂2BP +

∂2z
+ W(z|r1; t)PS(r1; t) + W(z|r2; t)PS(r2; t) (50)

∂PS(r1; t)
∂t

= −1

2

∂BP +

∂z

∣∣∣
r1

+ AP +∣∣
r1

−
∫

W(x|r1; t)PS(r1; t) dx

+ WS(r1|r2; t)PS(r2; t) − WS(r2|r1; t)PS(r1; t) (51)

∂PS(r2; t)
∂t

= −1

2

∂BP +

∂z

∣∣∣
r2

+ AP +∣∣
r2

−
∫

W(x|r2; t)PS(r2; t) dx

+ WS(r2|r1; t)PS(r1; t) − WS(r1|r2; t)PS(r2; t) (52)

[BP +]r1 = [BP +]r2 = 0 (53)

where it is assumed that P + is defined in the interval (r1, r2) ∈ R and PS(r1; t) and
PS(r2; t) represent the weight of Dirac deltas at boundary points r1 and r2. Since the bound-
ary is represented by a discrete set of points, simple layer singularities are replaced by Dirac
deltas at those points and surface integrals with surface element dS = a1/2dM−1ζ stop mak-
ing sense as does the distinction between surface PDF and surface scalar weight, so that
the ratio a1/2/g1/2 does not appear in the one-dimensional version of the exchange terms
between G = (r1, r2) and boundaries r1 or r2.

Equations (50), (51) and (52) may be found in Sect. 10 of [8], see also Chap. 3 of [2]
with a different naming convention and arrangement of terms. As it has been said, the re-
striction given by (53) should not be confused with a limitation in the kind of boundary
conditions that may be imposed on this problem. In effect, [BP +]ri = limz→ri BP +|G1 −
limz→ri BP +|G means that there is an exact balance between local diffusive processes going
out and coming into (r1, r2) at points {r1, r2}, which is related to the presence of reflec-
tion at the boundaries, but it does not pose any limitation on the intensity of such diffusive
processes. A thorough review of the appropriate boundary conditions for this problem may
be found elsewhere [2, 8, 12].
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5.2 Liouville’s Equations

Liouville equations are characterised by the absence of diffusion. This problem has already
been studied [21] under the same assumptions as those used in this paper. The derivation
for the Liouville case is wide easier since the pure drift contribution has a contravariant
vector nature and neither Ito nor Stratonovich rules are needed, just those of standard cal-
culus. With these points in mind, Liouville’s versions of (38), (39) and (40) were obtained;
there is no Liouville’s equivalent of (41) since it only contains a diffusion term; a possible
need of renormalization was explicitly considered as well as the chance of having moving
boundaries. It should be noticed that, in the original reference [21], no distinction was made
between proper PDF’s and scalar weight functions with a derivation which, implicitly, used
scalar weights and that contributions from an external domain, G1, were only considered in
the absence of singularities at the boundaries.

5.3 Problems in Fluid Mechanics

As it was said in the Introduction, singularities at the boundary appear naturally in the sto-
chastic representation of turbulent fluctuations of scalar fields in jets or mixing layers in
Fluid Mechanics, with the singular boundary contribution corresponding to the outer lam-
inar zone. Klimenko and Bilger [11, 13] arrived at the restriction [BP +]S = (BP +)G = 0,
for this one-dimensional (in scalar concentration phase-space) problem, from purely physi-
cal arguments: conservation of probability (G1 only consists of physically forbidden values
and, thus, it is meaningless to consider any probability coming from it or going to there),
constancy of the mean value of scalar field fluctuations due to turbulent mixing and time evo-
lution of the variance of these fluctuations according to the law d〈c2〉/dt = −2〈εc〉 where
2〈εc〉 is the scalar fluctuation dissipation rate.

More recently [17], there has been some discussion about different particle numerical
methods fitted to elastic (partial reflection) regular boundary conditions in the stochastic
simulation of velocities and densities of a fluid. The problem comes from the naming con-
vention chosen in the Fluid Mechanics community to talk about inflow and outflow bound-
aries, based on physical considerations related to the mean flow behaviour, drift in the sto-
chastic model. This led, in some instances, to neglect back-scatter, reflection induced effects
typical of mathematical regular boundary conditions, with a physical correlate in the real
fluctuations of the physical flow. It is worth noting that there are numerical methods fol-
lowing both the reflection picture [17] and the flow from the outside (particle buffer layers
around the boundaries) one [23].

5.4 Fast Diffusion Layer

The study of fast diffusion layers [16] led to a derivation of Fokker-Planck equations from
Chapman-Kolmogorov ones, similar to that proposed in this paper. The main differences
arise from the more formal character of the present paper; here all terms are retained in the
derivation without assuming that they should be zero based on particular physical consid-
erations. In this paper, moving boundaries are considered. The conditions needed for the
application of the divergence theorem by means of manifest covariant combinations of non-
covariant terms have been carefully analysed. No assumption about the boundary values
of test functions and their derivatives has been made in this paper. Possible contributions
from an outer probability reservoir in G1 have been considered, leading, on the one hand to
the need of a renormalization of the computed PDF when these contributions are related to
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probability currents with a global non-zero weight and, on the other hand, to a consideration
of terms with derivatives of test functions as a way of representing reflection at the bound-
ary instead of neglecting them by the assignment of a value to the derivative of allowed test
functions. Anyway, boundary conditions as established in (88) of [16] may be compared
with the results of this paper. That comparison will be realized with scalar weight results,
since surface integrals over the form dS are used in the reference to check with. It should
also be noticed that the normal to S has opposite sense in that reference and that there is no
1/2 factor in the diffusion terms.

Some comments on the physical assumptions used in modelling a fast diffusion layer: no
jumps and birth processes are considered; there is a death process at the boundary represent-
ing the trapping of some particles in it; there are no inertial contributions at the boundary;
there are no boundary singularities, though transport coefficients show singular behaviour at
the boundary which is a fast diffusion layer; there is no interaction with the external medium
what leads to enforcing values of the gradient of test functions at the boundary in the orig-
inal reference; nevertheless, environment, according to the analysis in Sect. 4, coefficients
affected by normal gradients of test functions could be isolated and related to reflection
which, in turn, may be linked to the presence of a external environment supplying as much
probability as that lost by bulk diffusion at the boundary.

Under the previous assumptions, the starting point of the analysis from the point of view
of this paper would be

∂P +

∂t
= −Φ

i

;i Fokker-Planck in the inner domain

Φ
n

G − 1

2
(BαnP +)G;α = 0 probability currents at the boundary

(B(n)(n)P +)G1 − (B(n)(n)P +)G = 0 reflection

and the fast diffusion layer is represented, based on physical assumptions, by

(1/2)(BαnP +)G;α = σP +
G + Φ

α

G;α (54)

where Φ
α

;α represents a fast forward Fokker-Planck transport restricted to S. The death term
restricted to S could also be interpreted as a probability current going into G1 and disap-
pearing from the integration domain. An expression equivalent to (88) of [16] would read,
with the naming conventions of this paper, as

−[
Φ

n]S = −σP +
G1 + Φ

n

G = Φ
α

G;α (55)

where it has been assumed that P + has been continuously extended into G1, P +
G1 = P +

G,
and it should be remembered that the normal to S points into opposite senses in this paper
and the expression to check with.

The derivation of the boundary condition (1/2)(BαnP +)G;α = σP +
G + Φ

α

;α deserves
more attention. It results from isolating a small layer adjacent to S from the rest of the do-
main. Its thickness is proportional to

√
τ , with τ being a small time characteristic of random

walks in the inner domain. The contribution from this layer would give all the boundary
singular terms under the limit τ → 0; on the other hand, the contribution from the diver-
gence theorem applied to the rest of the domain would yield the exchange terms between
the singularity and the inner domain, under the same limit.
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The first physical assumption is that the small layer and the inner domain are effec-
tively decoupled, that is to say, contributions coming from each of these terms must vanish
separately, while their joint cancellation has been assumed throughout this paper. This as-
sumption may be based on the fact that the characteristic time scale of random walks inside
the small limiting layer is τa  τ (fast diffusion layer), so that the exchange contribution to
compensate with the narrow layer one, for times τa  t  τ , is frozen from the viewpoint
of the small layer. Moreover, under the limit τ → 0, this frozen contribution becomes zero.
When τ is small but not zero, it could be argued that the behaviour of the separate balance
of the exchange terms is the same as in the limiting case and so is the separate balance of
the small layer contribution, though this is only an assumption.

From the fact that τa  τ , an analysis of the small layer contributions may be per-
formed [16] where it is found that terms not tending to zero in the limit τa → 0 are only
those related to death in the layer, drift and diffusive transport parallel to the boundary
and an extra drift normal to the layer which comes from the diffusion normal to the layer
with time scale τ . This analysis is valid regardless of the presence or absence of a sin-
gularity at the boundary and would mean that, in (44), A

n

SγS − (Bnα
S /2)γS;α = −Φ

n

S = 0
and (Bnα

S γS/2);α should be moved to (43) whereas B(n)(n)γS/2 should be moved from (45)
(which would disappear) to (44). The reason being that diffusion normal to the boundary is
replaced by equivalent drift terms normal to the layer what, in a formal mathematical sense,
is tantamount to reducing the order of the normal derivatives of test functions linked to
the corresponding terms. From this analysis and assuming the decoupling between singular
(small layer) terms and exchange (divergence of the rest of the domain) ones and that there
is no singular inertial contribution, (43) would become

−ΦS

α

;α + (Bnα
S γS/2);α − DSγS = 0 (56)

where DS = σ is the rate of trapping of particles being in the small layer. (Bnα
S γS/2);α

has changed sign since it comes from a volume integral of a test function times the double
layer singularity with weight (Bnα

S γS/2);α , which is equal to a surface integral of this weight
with opposite sign times the normal derivative of the test function and, after moving terms,
normal derivatives of test functions become test functions.

The second physical assumption is that, in the limit τ → 0, the behaviour of
(BnαP +/2)G;α is like that of its singular counterpart as given by (56), that is to say (54)
is true. It could be argued to the contrary that, in the first assumption, singular and exchange
terms were assumed to be decoupled and, now, it is said that there is a exchange contribution
like their singular counterpart. Both ideas may be reconciled only in the limit τ → 0.

6 Conclusions

A proper manifest covariant derivation of the Chapman-Kolmogorov differential equations
with an explicit computation of surface terms, which may contain singular boundary contri-
butions, has been presented. Work has been performed with PDF’s and with related scalar
weight functions [20] since the PDF does not behave as an scalar under a coordinate trans-
formation.

Not surprisingly, this weak derivation looks like the results obtained for generalised func-
tion derivatives with explicit consideration of discontinuities at boundaries. The calculation
of the inertial term could be considered as a valid generalised function derivative with regard
to a standard variable (time), instead of a generalised one (stochastic phase space) when the
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domain in the generalised phase space depends on the value of the standard variable (moving
boundaries).

The drift, as usually considered in Fokker-Planck equations, is not a contravariant vector.
Graham [10] proposed a modified, contravariant drift Ai − (1/2g1/2)∂(Bijg1/2)/∂zj (g is
the determinant of the covariant metrics) which leads straightforwardly to the Stratonovich
form of Chapman-Kolmogorov differential equations with singular terms at the boundary.
In this paper, a different modification has been identified: Ai + Γ i

klB
kl . This version does

not modify the drift when the metrics connection is zero, such as it is the case with Carte-
sian coordinates in an Euclidean metrics and with a connection compatible with the metrics.
It leads straightforwardly to the standard form of Chapman-Kolmogorov differential equa-
tions with singular terms at the boundary. Of course, both modified drifts and both forms of
Fokker-Planck equations are related.

The rules of Ito and Stratonovich stochastic calculus may be interpreted in a weak sense
as a way of preserving manifest covariance when second order terms in a Taylor series
expansion of test functions have to be retained together with first order terms.

A physical picture of singular boundary contributions has been provided in terms of
Monte Carlo particles with their expected interaction with a boundary: absorption, emission,
transmission and reflection.

A comparison with previous work on the topic has been conducted.
Some points to bear into mind since their modification would imply a change in the

results of this paper are:

(i) The limit for short times of the ratio between higher order statistical moments of small
displacements and 	t , in the form of (6) and (7), vanish with the maximum displace-
ment considered. That is to say, work is done with Markov processes and a well-defined
PDF [9] (positive semi-definite and normalizable).

(ii) The domain metrics is assumed to be continuous in R
M and constant in time. Were g

to depend on time, there would be additional inertial terms like that displaying time
evolution of a in (8) plus an advection-like term which was excluded from the evolu-
tion of a because it was considered that S, as an M − 1 manifold embedded in R

M ,
propagates normal to itself.

(iii) There is not a chain of singularities inside singularities in manifolds with a dimension
progressively reduced. It has not been considered that there was an M − 2 manifold
embedded in S such that the values of PS , γS , Aα

S or B
αβ

S showed any discontinuity
at it. If so, S could be divided into regular zones (regular from intrinsic consideration,
not from M space view) separated by M − 2 manifolds playing the role of boundaries
inside S and the application of the divergence theorem to each bounded zone inside S

would stop giving a zero contribution; that is to say, singularities (from the intrinsic
view of S) could develop at those M − 2 manifolds. The chain of singularities inside
singularities could be continued until arriving at singular points.
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